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Chart 1: The motivation for the work to be described arose
because of a desire to more fully understand the coupling between
antennas mounted on airframes. A computational model existed
which could assess the coupling on a conducting surface by means
of the Geometrical Theory of Diffraction. However, modern
airframes include non-perfectly conducting and nc)n-conducting
materials. The present work makes use of the formulation of
Pearson [Radio Science, 1986] [IEEE Trans. AF’-35, June 1987] for
the multilayered cylinder problem t-o obtain an asymptotic
representation of the coupling in the presence of these more
general materials.

Chart 2: Pearson treated the problem of computing the field of
an elemental source radiating in the presence of a multilayered
circular cylinder. As shown, the source and field points need
not be a t the same axial coordinate so that the ray path is not
circular but helical.

Chart 3: Asymptotic evaluation of Pearson’s expression for the
potentials generated by the source in the presence of the
multilayered cylinder are far too complicated to evaluate
asymptotically. However, at any given fixed complex azimuthal
mode order, v, one may compute an anisotropic surface impedance
which models the reflection prc)perties of the cylinder exactly.
At nearby values of the order, the result is approximately
correct. The expression for the potentials in the presence of
the impedance cylinder is simple enough to treat asymptotically
and that is what is described here.
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Chart 4: (Vector Potentials - I) This is Pearsc)n’s expression
for the surface vector potentials generated by axially directed
electric and magnetic elemental sources located c)n the surface of
a cylinder. The discrete sum denotes accumulatic)n of the terms
corresponding to multiple circumnavigations of the cylinder.
Note that this is a double spectral inteqral over the complex
azimuthal mode order, v, and-the axial
the logarithmic derivative, L, and the
Q, one may express the elements of the
in the form shown in the next chart.

w;venumber, a. De;ining
ratio of Hankel functions,
2X2 reflection matrix, RBI

Chart 5: (Vector Potentials - II) The elements of the 2X2
reflection matrix in the integrand of the spectral integral
represent the coupling between the axially directed sources and
the vector potentials due to the reflecting cylindrical impedance
surface. The elements of the matrix may be expressed in terms of
the elements of the 2X2 impedance matrix of the reflecting
surface in the form shown in this chart. Note that the
denominator, A, is of the same order of complexity as the
numerators.

Chart 6: (Vector Potentials - 111) Substituting the explicit
expressions for the reflection matrix elements into the integrand
and simplifying by means of the Wronskian of the Hankel functions
results in these expressions for the vector potentials. We now
proceed to carry out the integration over the axial wavenumber by
the method of stationary phase.

Chart 7: (Stationary Phase Result - I) The result of the
stationary phase integration may be expressed in terms of Fock
type integrals denoted here by v. D is the arc length of the ray
path on the cylinder and LI is the angle between the path and the
axial direction. (For and azimuthal path, e is 90 degrees.)

Chart 8: (Stationary Phase Result - II) The Fock type
integrals, v, may be expressed in the form shown here. Note that
the v integration variable has been replaced by z via the change
of variable shown at the bottom of the chart. Similarly the
azimuthal separation of the source and field points is now
represented by the so-called Fock parameter, ~, defined as
indicated. Our goal is to evaluate these integrals
asymptotically for electrically large radius cylinders.
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Chart 9: (Asymptotic Evaluation - I) Following the work of many
earlier researchers [e.g. , Paknys and Wang, IEEE Trans. AP-35~
March 1987] we approximate the logarithmic derivative, L, using
the fock type Airy functions, w(z). Of course, the large &
behavior of the integrals is accessible via the familiar residue
series of creeping waves. However, the small, ~ behavior,
corresponding to large z, is more difficult to obtain. Again
following earlier work, we expand the corresponding ratio, w’\w,
for large T as shown.

Chart 10: (Asymptotic Evaluation - II) In terms of this ratio,
X, the denominator of the integrands takes the form indicated
here. Now, for the azimuthal case treated by earlier workers,
the last product disappears and one of the factors of the first
product is canceled by a similar factor in the numerator
resulting in an integrand with a single bino;nial in the
denominator. This type of integrand has been treated effectively
by Wait [J. Res. NBS, April 1956], by Bremmer [IRE Trans., AP-9,
July 1958], and by Hill and Wait [Radio Science, May-June 1980].
Thus , if we can express our more general integrand as a sum of
these previously treated integrands, the problem is solved. We
proceed as follows.

First, reverse the expansion of !R for large z to yield a series
for z as a function c)f R as shown. Then note that the previous
denominator expressic)n multiplied by R2 is a polynomial in R. In
this case we have retained only the first two terms of the z
expansion so the polynomial is of sixth degree. Three terms
would have resulted in a polynomial of twelfth degree. Finally,
factor the polynomial. into binomial factors as indicated at the
bottom the chart.

Chart 11: (Asymptotic Evaluation - III) Our Fock type integrals
now take the form shown which is easily recognized as a sum of
six integrals of the type previously treated in the literature.
Following these treatments, we substitute the large z expansion
of R displayed at the bottom c)f the chart thereby reducing the
integral to a sum of known Laplace transforms. If q is small in
magnitude, one expands the integrand (exclusive of the
exponential) in a series of inverse powers of z. The transform
then results in a series of pcxitive powers of ~ representing v.
If the magnitude of q is large, a more effective approach due to
Wait and Bremmer is to expand in terms of the I,aplace transform

of the complementary error function, erfc(q~;) .
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Chart 12: (Asymptotic Evaluation Summary) In summary, then, for
large separation of source and field points (large Fock
parameter, ~), one uses the residue series. for small Fock
parameter, one uses a power series for small q. For large q,
however, one uses the complementary error function
representation. Note that the desired Fock integral is only
equal to the expression shown for certain ranges of q. In other
ranges one must use a different expression obtained by changing
the sign of q.

Chart 13: A few selected examples
permits.

Last Chart: (Concluding Summary)

will be discussed as time

The azimuthal case where e is
90 degrees has been treated successfully in the literature. It
was determined that for large Fock parameter the creeping wave
(residue) series is useful. For small Pock parameter, however,
this series is very S1OW1.Y convergent and, therefore,
impractical. In this case, one expands the integrand (exclusive
of the exponential) in terms of known Laplace transforms. These
approaches have all been generalized to the nonazimuthal  case
here although it must be noted that, because of the nature of the
stationary phase integration applied to the axial. wave number, 0
equal to zero (axial paths) must be excluded. The generalization
was accomplished by reducing t-he general. case to a summation of
integrals of the form arising in the simpler previously treated
azimuthal case.
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where W2 (T) =~ [Bi(~) - j Ai(~)]

and Ai and Bi are Airy functions
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Asymptotic Evaluation
S u m m a r y

● Large & Residue series
● Sma!! ~: Power series in inverse powers of T

leadin~ to a series of positive powers of ~
● If q is large, the power series is poorly

convergent unless < is extremely small=
● For large q, Wait and Bremmer obtain a

“small curvature” approximation via the
Laplace transform pair:
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1 ~st ~s = 1 - q eq’t ~erfc q t
g .. (G + q) $7n
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Concluding Summary

● In the azimuthal case:
- The small & power series is useful only for small q.
- The small curvature approximation provides good results

for large q (and small and moderate ~).
- The residue series covers the large L regime..

● All of the above can be generalized to the non
-azimuthal case.

● The non-azimuthal case has been treated here
by reducing the integrals to a sums of
integrals of the azimuthal case form.


